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A strongly implicit procedure is described which solves the system of 13 point finite 
difference equations associated with the biharmonic and similar fourth order elliptic 
equations. No factorization of the equation is required, and for the majority of problems, 
a universal set of iteration parameters provide rapid rates of convergence. In a com- 
parison with another solution procedure for the biharmonic equation, the new method 
appears to reduce the computation required to about one-third. 

1. INTRODUCTION 

The numerical methods for solving systems of finite difference equations 
associated with partial differential equations have developed considerably in the 
last few years, due mainly to the increasing use of high speed digital computers. 
From the straightforward point iterative methods, such as Gauss-Seidel and 
successive over relaxation, through to line iterative methods, such as successive line 
over relaxation and the semiiterative Peaceman-Rachford alternating direction 
implicit method, we can trace an increasing use of partially implicit methods of 
solution. For these methods, in place of updating the values at each node 
(i.e., solving each equation) in turn, as for the point iterative methods, one 
updates all the points (i.e., simultaneously solves all the equations) belonging to 
a particular subset of the totality of points (equations). One then passes to the next 
subset. The subsets are, in general, disjoint and the totality of all the subsets is 
the whole set. The strongly implicit procedure devised by Stone [4] uses only one 
subset, namely the whole set of points, but in place of solving the whole set of 
finite difference equations as given, the method solves a very closely related system 
of equations which is generated from the original set so that it can readily be solved 
very simply by triangular decomposition, and so that the limit of the iterative 
sequence is the solution of the original system. 

As originally proposed by Stone, the strongly implicit procedure was formulated 
for second order partial differential equations. A closely related procedure will be 
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described which has been devised for solving fourth order elliptic1 (or parabolic) 
partial differential equations which yield systems of finite difference equations with 
13 terms, such as the biharmonic equation. The method evolves as a fast procedure 
producing accurate results. 

2. OUTLINE OF METHOD 

We seek the solution of the system of MN linear algebraic equations 

A(i,j) T(i,j - 2) + Sl(i,j) T(i - 1,j - 1) + B2(i,j) T(i,j - 1) 
+ B3(i,j) T(i + 1,j - 1) + Cl&j) T(i - 2,j) + C2(i,j) T(i - 1,j) 
+ C3(i,j) T&j) + C4(i,j) T(i + 1,j) + C5(i,j) T(i + 2,j) 
+ Dl(i, j) T(i - 1,j + 1) + D2(i,j) T(i,j + 1) + D3(i,j) T(i + 1,j + 1) 

+ E(i, j) W, j + 2) = Q(U), 

with i = 1, 2 ,..., M and j = 1, 2 ,..., N, written in matrix form as 

AT = Q, 

where A is a square matrix of order MN, T is a column vector of the elements 
m, 11, m l),..., ww I>, w, 2),..., r(M, N), and Q is a column vector in which 
the values of the source term are stored. Values of the coefficients for T(i, j) with i 
and j outside their respective ranges must be set to zero by using the boundary 
conditions. Such a system of equations is obtained from the finite difference 
replacement of, for example, the two dimensional biharmonic equation on a 
rectangular Cartesian grid. We assume that the region in which the values of T 
are sought is a rectangle, though this does not restrict the use of the method to 
problems defined within rectangular boundaries. A finite region of any shape can 
always be circumscribed by a rectangle, and the difference equations for nodal 
points within this rectangle, but outside the region of interest, can always be written 
as 

T(i,j) = 0, 

i.e., all the coefficients except the central one are set equal to zero. If the boundaries 
of the problem are piecewise rectangular, the inclusion of the boundary conditions 
into the difference equations for the nodal points on or close to the boundary 
seldom causes any difficulty, but for other less regular boundary shapes, ingenuity, 
and sometimes approximate representations of the conditions, have to be used. 

1 A fourth order partial differential equation is elliptic if it has no real characteristics. 
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For the nodal points on or adjacent to the boundaries of the region under 
consideration, the finite difference equations must be derived incorporating the 
boundary conditions. First, the finite difference equation is derived for the nodal 
point in terms of nodal values of points within the region of interest, and some 
points which lie outside the relevant region, such as the values T(0, l), T(- 1, 0), etc. 
The positions of the necessary nodes are derived by constructing image points in 
the boundary. For example, the point (0, 1) is the image point of (2, 1) in the 
point (1, 1). Fourth order equations of the Biharmonic type require two non- 
degenerate boundary conditions at each boundary point, and each boundary 
condition must consist of a linear combination of the function value and its first, 
second, and third normal derivatives at the point. Since the pair of equations is 
nondegenerate we can always derive one condition which does not involve the 
third derivative. The general pair of conditions is then 

al(i,.j) ~(i,.j) + az(i,j) (+& j) + 4J) (g) (i j) + 42) ($) (i j) = 4J7 

and 

Such a pair of conditions holds for all points (i, ,j) which lie on the boundary, where 
n is the outward normal. 

Consider a boundary point (i,j) for which the four points (i - l,j), (i - 1,j - l), 
(i - 1, j + l), and (i - 2, j) all lie outside the region of interest. The finite 
difference equation for the point (i + 1, j) involves the value at the point (i - 1, j) 
which is outside the boundary. The finite difference form of the second boundary 
condition evaluated at (i, j) involves the three values T(i, j), T(i - 1,j) and 
T(i + 1, j) and is used to eliminate the value at the image point T(i - 1, j). Thus, 
the finite difference equation for the nodal value T(i + 1, j) now only involves 
values within the region of interest. The difference equation for the boundary point 
(i, j) involves the values at all four of the above points which are positioned outside 
the region of interest. The finite difference form of the first boundary condition 
evaluated at (i, j) is used to eliminate the value T(i - 2, j). The second boundary 
condition can then be used to eliminate the three remaining values which are outside 
the boundary by evaluating the condition at (i, j), (i, j - l), and (i, j + 1). 

In the finite difference equations for the boundary points the coefficients of the 
values of T at nodal points which lie outside the region of interest must all be set 
equal to zero after the evaluation of the modification to the other coefficients of 
internal nodal values by utilizing the boundary conditions. 

For certain sets of boundary conditions the above procedure must be changed. 
For example, if the two boundary conditions are T specified and W/an specified, 
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then for the boundary nodal points we simply have T = given, and this is in the 
form of the difference equation with twelve zero coefficients. For the points internal 
to the region and adjacent to the boundary the value at the one point in the 
thirteen point difference equation which is outside the region of interest is expressed 
in terms of the central value by utilizing the boundary condition specifying the 
normal gradient. 

The matrix A then has a special form-all the nonzero elements lie on thirteen 
diagonals made up of the main diagonal and the four adjacent diagonals, two 
further bands of three diagonals in each of the upper and lower half triangular 
divisions of the matrix, and then one further diagonal in each of the upper and 
lower half triangles. The form of the matrix A is shown in Fig. 1. 

A= 

I 
(I + (i. WI) 

I 

MI.,) Bl(t.,) 82(1.,) B3h.,) CI(I.1) C2(l.l) C3(I.,) 

FIG. I. The matrix A. 
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The method then proceeds by determining the elements of two matrices L and U, 
where L has nonzero elements on only seven diagonals, namely those diagonals 
corresponding to the nonzero diagonals of the matrix A which lie on or below the 
main diagonal, and where U has nonzero elements on seven diagonals corre- 
sponding to the nonzero diagonals of the matrix A which lie on or above the main 
diagonal. Without any loss of generality, the main diagonal elements of U are all 
set equal to unity. The product matrix LU is formed and has 21 nonzero diagonals, 
including the 13 corresponding to those of the matrix A, as shown in Fig. 2. 

The elements coincident with those nonzero elements of A could be equated with 
those of A so that we would have the identity 

LU = A + S’, 
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FIG. 2. The formation of the product matrix LU. 

where the matrix S’ has eight nonzero diagonals, namely those which are generated 
by the product LU but which are not present in the matrix A. Since there are 
13 diagonals of the matrices L and U to be determined and there are 13 diagonals 
of the matrix A already specified, the elements of L and U are uniquely determined. 
The elements of S’ could then easily be calculated. 

However, the idea expounded by Stone [4] is that the matrix LU can be con- 
sidered as the coefficient matrix of a system of 21 point difference equations. The 
extra terms which are present in the elements of LUT and which are not present 
in the elements of AT involve the values 

T(i + I,j - 2), T(i + 2,j - 2), T(i + 2,J - I), T(i + 3, j - I), 
T(i - 1 ,.j + 2), T(i - 2,J + 2), T(i - 2, j + I), T(i - 3,j + 1). 

We must determine all these values accurate to second order in small quantities in 
terms of the 13 values already present in the difference equation by using Taylor 
series expansions. On a uniform grid we can use 

T(i * I,,j F 2) = T(i, j F 2) + T(i f I, j i 1) - T(i,j T 1) 

+ wx 4, dx3, b31, 

T(i f 2, j i 1) = T(i f 2, j) + T(i + 1, j f 1) - T(i -C l,.j) 

+ wx AY, 4x3, 4J31, 

T(i * 2, j F 2) = T(i, j -f 2) + T(i f 2, j) - T(i, j) 

+ 0[4dx dy, 8dx3, 8dy3], 
and 

T(i i 3, j T 1) = T(i, j ‘f 1) + 3/2(T(i ZII I, j T 1) - T(i F 1, j T 1)) 

+ O[9/4dx21, 

where dx and dy are the grid spacings in the x and y directions, respectively. 
These relations are accurate to second order only when the grid is uniform, unlike 
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those derived by Stone [4] for the five point operator system which are universally 
accurate, independent of the nonuniformity of the grid. (A version of the program 
was modified to incorporate identities similar to those given above, but derived for 
nonuniform grids. However, the amount of extra work involved brought no 
corresponding increase to the rate of convergence.) The relations detailed above are 
used to partially eliminate the extra terms which appear in the elements of LUT 
and not in those of AT. The exact amount by which they are reduced is found to 
critically affect the convergence rate, and a cycle of reduction parameters is found 
to be desirable. The parameters used for the 13 point equation solution routine 
are the same as those utilized by Stone [4] for the five point equation routine on 
a uniform grid. From the experience gained with this set of parameters, it appears 
that they are equally useful on nonuniform grids as on uniform grids. The maximum 
parameter is amax given by 

01 max = * - (M - 112 : (N _ 1)2 3 

and a cycle of nine parameters is used derived from the formula 

%n = 1 - (1 - a*ax)(~-l)l~, m = 1, 2,..., 9. 

The order in which the parameters are used marginally affects the rate of 
convergence and since this is, in general, very rapid the use of the parameters in 
three sets of threes, i.e., in the order 9,6,3, 8,5,2,7,4, 1, is found desirable. (Notice 
that each set of three parameters 9, 6, 3, 8, 5,2, and 7,4, 1 spans a reasonably 
large proportion of all the parameter values.) Each parameter is used for two 
iterations, the first solves the equations in the order outlined above, and for the 
second the order in which the equations are solved is taken with j decreasing 
from N to 1. This contrivance introduces an extra degree of symmetry into the 
method by incorporating some different “extra” values of T(i, j) on alternate 
iterations, and by experiment it considerably enhances the rate of convergence. 

After the suggestion by Weinstein, Stone, and Kwan [5], it is suggested that the 
value Of 0!maX be varied if, for any particular problem, either the rate of convergence 
is slow or the procedure diverges. For the former case amax can be increased, but 
must always be less than unity, and if the method diverges, amax should be 
decreased, but must always remain positive. 

The iterative scheme is derived in the following manner. We seek the solution T 
to the equation 

AT = Q, 

where the elements of A and Q are known. We determine the elements of two 
matrices L and U both of the special forms outlined above such that 

LU = A + S’ - LYS, 
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where the matrix S has nonzero elements in the same diagonals as those of A, and 
it is related to the matrix S’ defined above by using Taylor series expansions to 
express S’T in terms of ST to second order in small quantities. Thus, we have 

LUT = AT + (S’ - olS)T, 

where the elements of L and U have been determined in terms of those of A and 
the value of 01. The iteration scheme is then based on the successive updating 
equation 

(A + S’ - c&) T”+l = (S’ - (INS) T” + Q, 

i.e., given an approximation T” to the function values T, we calculate a new 
approximation T”+l from the above expression. However, the formula can be 
simplified by subtracting (A + S’ - ~6) T” from both sides to obtain 

i.e., 
(A + S’ - aS)(Tnfl - T”) = Q - AT”, 

LUV = R”, 

where Sn = Tn+l - T” and is the correction to be made to the values T” in order 
to obtain the new values T n+l, and R” is the residual vector of the “solution” 
T = T”. We note that L and U are both triangular matrices and they can, therefore, 
be inverted in turn in a straightforward manner, first to give 

and then 

U@ = L-lRn 

Sn = U-lL-lRn. 

We note that if the process converges, the sequence {T”} has a limit, and this limit 
does in fact satisfy the equation 

since if 
AT = Q, 

1 Tn+l - T” 1 -+ 0, then IQ-AT”/+O. 

We have, thus, defined the strongly implicit procedure for the solution of systems 
of 13 point difference equations. 

In the next section we detail the manipulation of the equations to obtain the 
elements of L and U, and the subsequent evaluation of the elements of the correction 
vector an. The application of this new method to a problem requiring the solution 
of the biharmonic equation is described in the succeeding section, and a comparison 
is made with another solution procedure. 



310 JACOBS 

3. THE SOLUTION PROCEDURE 

The elements of the matrices L and U are determined from those of the matrix A 
from the equation 

LU = A + S’ - OS, 

where S is defined to make (S - S’)T a small term of order dx dy. Some of the 
contribution of the additional terms which have been introduced, therefore, remain 
in the equation to be solved, but the precise amount varies as 01 varies namely from 
one pair of iterations to the next. This residue assists in the achievement of a fast 
iterative scheme. Not only does the value of a: change but also the order in which 
the equations are solved alternates on successive iterations as explained in Section 2 
and so the iteration matrix has different elements on alternate iterations. It is, 
therefore, necessary to recalculate the elements of the matrices L and U at the 
commencement of each iteration. These are determined from the set of equations 

A(i,j) = a(i, j) + a(a(i,j) c4(i,j - 2) + u(i,j) c5(i,j - 2)) 

Sl(i,j) = a(i,j) dl(i,j - 2) + bl(i,j) - l.&b3(i,j) c5(i + I,j - l), 

B2(i,,j) = u(i,,j) d2(i,,j - 2) + bl(i,j) c4(i - l,,j - 1) + b2(i,j) 
- a(a(i,j) c4(i,j - 2) - b3(i,j) c5(i + 1,j - I)), 

B3(i,j) = u(i,j) d3(i,j - 2) + bl(i,j) c5(i - 1, j - 1) + b2(i,,j) c4(i,j - 1) 
t b3(i,j) f a(u(i, j) c4(i, j - 2) + b2(i,j) c5(i, .j - 1) 
+ b3(i,j) c4(i + 1 ,j - 1) + 1.5b3(i,J) c5(i + l,.j - l)), 

Cl(i,j) = bl(i,j) dl(i - 1,j - 1) + cl(i,j) 4 a(cl(i,,j) e(i - 2,j) 
+ cl(i,j) d2(i - 2,,j) + c2(i,j) dl(i - l,j)), 

C2(i,j) = bl(i,j) d2(i - l,j - 1) + b2(i,j) dl(i,j - 1) + cl(i,j) c4(i - 2,j) 

+ c2(i,j) - lIX(cl(i,j) d2(i - 2,j) + c2(i,j) dl(i - IJ)), 

C3(i,j) = bl(i,j) d3(i - I, j - 1) + b2(i,j) d2(i,j - 1) + b3(i,j) dl(i + 1, j - 1) 
+ cl(i,j) c5(i - 2,j) + c3(i,.j) + c2(i,j) c4(i - 1,j) 
+ u(i,,j) e&j - 2) - a(c1 (i, j) e(i - 2,j) + a(i, j) CW, j - 2)), 

C4(i,j) = b2(i,j) d3(i,j - 1) + b3(i,.j) d2(i + l,j - 1) + cW,j) c5(i - l,j) 

+ d(i, j) c4(i, j) - a(b2(i, .j) c5(i, j - 1) + b3(i,.j) c4(i + 1, j - I)), 

C5(i,j) = b3(i,j) d3(i + 1, j - 1) + c3(i,.j) c5(i,j) + @2(i,j) c5(i,j - 1) 

+ b3(i,.j) c4(i + l,.j - 1) + a(i,j) c5(i,j - 2)) 
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Dl(i,,j) = cl(i,j) d3(i - 2,j) + c2(i, j) d2(i - l,j) + c3(kj) ~lGJ) 
+ bl(i, j) e(i - 1, j - 1) + cL(cl(i, j) d2(i - 2,j) + C2(i,j) dl(i - Id 

+ c2(i,j) e(i - 1,j) + lScl(i,j) dl(i - 2,j)), 

D2(i,j) = c2(i,j) d3(i - 1,j) + c3(i,j) dxj) + b2(i,j) 4&j -- 1) 
+ a(cl(i,j) dl(i - 2,j) - c2(i,j) e(i - l,.i)), 

D3(i,j) = c3(i,j) d3(i, j) + b3(i,.j) e(i + 1, j - 1) - 1.5ml(i,I) dl(i - 2,.d, 

and 

E(i, j) = c3(i, j) e(i, j) + cu(cl(i,j) e(i - 2, j) + c2(i,j) e(i - I,.j)), 

where 01 is the convergence parameter. These equations are rearranged to express 
the values of a(& j), bl(i, j) ,..., e(i, j) in terms of the values of the coefficients of the 
matrix A, namely A(i, j), Bl(i, j) ,..., E(i, j), and values of a(i,j), bl(i, j) ,..., e(i, j) 
which are already known. 

On alternate iterations, the order of solution of the difference equations has j 
decreasing from N to 1 in place ofj increasing from 1 to N. This alters the values of 
the coefficients A(i, j), Bl(i,j), etc. in the above equations, but little extra work is 
involved, and this modification is accompanied by a considerable increase in the 
rate of convergence. 

Having determined the values of the elements of the matrices L and U we solve 
the matrix equation 

LUSn = Rn, 

where Rn = Q - AT”. We first solve for V the system 

i.e., 

where 

With 

LV = R”, 

V = L-1Rn 

v = US”. 

~n(i,j) = Q(& j) - A(i, j) Tn(i, j - 2) - Bl(i, j) Tn(i - I,j - 1) 

- B2(i,j) T”(i, j - 1) - B3(i,j) T”(i + 1, j - 1) - cl(i,j) T”(i - 2,j) 
- ~2(i,j) Tn(i - 1,j) - C3(i,j) T”(i, j) - W&j) W + l,j) 
- a(i,j) ~(i + 2,j) - Dl(i, j) T”(i - 1, j + 1) - D2(i, j) 7Yk.i + 1) 

- D3(i,j) Tn(i + 1, j + 1) - E(i,j) T”(i,j i- 2), 
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the elements of V are determined from the equations 

a&j) V(i,j - 2) + bl(i,j) V(i - 1,j - 1) + b2(i,j) V(i,j - 1) 
+ b3(i,j) V(i + I,j - 1) + cl(i,j) V(i - 2,j) + c2(i,j) V(i - I,j) 

+ c3(i,j) V(i,j) = R”(i,j). 

Having determined all the elements of the matrix U and the elements of V, we can 
determine the elements of S” from the equation 

namely 
US” = v, 

S”(i,j) + c4(i,j) syi + I,j) + c5(i,j) syi + 2,j) + dl(i,j) 6”(i - I,j + 1) 
+ d2(i,j) S”(i,j + 1) + d3(i,j) @(i + I,j + 1) + e(i,j) @(i,j + 2) = V(i,j). 

The latter equations are solved in the reverse order, namely i and j are taken in the 
reverse order in which the equations were numbered for the particular iteration. 

As mentioned above, it is necessary to store all the nonzero elements of the 
matrix U and all the elements of the vectors S” and V. 

4. A SAMPLE PROBLEM 

A test problem was run to compare the strongly implicit procedure for solving 
the biharmonic equation with the “fast finite difference method” detailed by 
Greenspan and Schultz [2] in a recent paper. Their method consisted of factorizing 
the biharmonic equation into two second order elliptic equations, one Laplace 
equation and one Poisson equation. Namely, decompose the equation 

V4T = 0, 

into the two equations 

with 
w = VT 7 

VW = 0. 

They then used successive over relaxation (S.O.R.) to converge each of these 
second order equations using the usual five point difference replacement of the 
Laplacian. They found it necessary to smooth (or under relax) the solutions 
obtained by each of these inner iterations prior to proceeding to the determination 
of a new approximation for the other variable. Greenspan and Schultz [2] quoted 
times required to solve several problems using a UNIVAC 1108, but since such a 
computer was not available to the present author, a program was coded using 
their method for use on the IBM370/165. 
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The problem solved is the determination of a function T which satisfies the 
biharmonic equation in the unit square region 0 < x < 1, 0 < y < 1, subject 
to boundary conditions on T and on aT/an, where II is the outward pointing normal, 
at all the boundary points. The boundary conditions were derived from the function 

T = x3 - 3y2 + 2xy, 

which satisfies the biharmonic equation, and with which the solutions obtained 
can be compared. 

The method of Greenspan and Schultz requires the use of four parameters, 
namely one relaxation parameter for each of the two inner iterative procedures 
using S.O.R. on T and w, respectively, and two smoothing parameters with which 
to under relax the solutions obtained by the inner iterations on T and w before 
proceeding to the inner iteration on the other variable. Following Greenspan and 
Schultz, a 21 x 21 uniform grid was used, and the same parameters as detailed 
by them were used. Unfortunately, the authors did not state the level of convergence 
to which they “solved” the inner iterations using S.O.R., and although several 
degrees of convergence were tried, we were unable to match exactly the case they 
described. Generally speaking, the more accurately one determines the solutions 
to the inner iterations, the fewer outer iterations are required. By using convergence 
criteria on the inner iterations calculated in such a manner that convergence was 
achieved to the whole problem when only one inner iteration was required for 
each of T and w, a total of 45 outer iterations on the whole system were required 
(a maximum of two hundred inner iterations was specified). With less strict 
convergence criteria on the inner iterations, in excess of 45 outer iterations were 
required, until in the extreme limit when only one inner iteration on each of T and 
w was used, a total of 441 outer iterations was required. However, for all the cases 
run, the total running time of the programs was between 4.9 and 5.5 set (the 
programs were written in FORTRAN and compiled with the H compiler using 
OPT = 2.) 

The same problem was solved utilizing a subroutine which was written to solve 
systems of thirteen point difference equations based on the solution procedure 
outlined in Sections 2 and 3. Using the 21 x 21 uniform grid, the coefficients of the 
difference equations for the internal 17 x 17 nodal point square are the usual 
biharmonic replacements namely 

I 
2-8 2 

1 -8 20 -8 I 
2-8 2 

For the boundary points, the value of the function is specified to be equal to the 
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value of the analytical function x3 - 3y2 + 2xy; thus, the difference equations for 
the boundary points are simply T = given. The 13 point difference molecule for 
points adjacent to the boundary involves the value of the function at a point which 
is outside the square region of interest. However, since the value of the normal 
derivative at boundary nodes can be calculated from the analytical function, the 
value of the function at the image points outside the region of interest can be 
expressed in terms of the value of the function at a nodal point within the region 
of interest. Thus we derive a system of finite difference equations of the form 
specified in Section 2. The solution procedure described in that section was then 
used with the standard set of iteration parameters to determine successive approxi- 
mations to the solution. On the first iteration the equations are solved in the 
original order and the elements of the matrices L and U are first determined using 
the equations given in Section 2. The value of the correction vector 8’ is then 
determined, and, hence, the first approximation to the solution is derived. On the 
next iteration the difference equations are solved withj decreasing from N to I and i 
increasing from 1 to M, otherwise the details are the same. After each pair of 
iterations a new iteration parameter is calculated and then used. 

Convergence was achieved in 10 iterations which took 1.4 set of computing time. 
This means that convergence was achieved in about one quarter to one third the 
amount of time required by the previous program. The results obtained by the two 
methods of solution were of very similar accuracies. 

From the experience gained by using the strongly implicit procedures, it is 
believed that they often require considerably less computation than alternative 
iterative methods, and, even more significant, the standard set of parameters provide 
rapid rates of convergence for almost all the problems tried to date, thus eliminating 
the necessity to optimize a parameter or a set of parameters as is so often necessary 
with other iterative schemes. For highly nonhomogeneous problems, such as those 
derived on very nonuniform meshes, it is sometimes necessary to reduce the value 
of 0! In&% , and the rates of convergence are less rapid than those obtained for more 
homogeneous problems. Nevertheless, even in these cases the strongly implicit 
procedure always seems to have better convergence rates than other schemes. 

5. OTHER APPLICATIONS 

The biharmonic operator appears as the dominant factor in many equations of 
mathematical physics. For example, the vibrations of a thin plate are determined 
by the solutions to the time dependent equation 

a2u - v4u 

at2 2 

where u is the displacement of the plate from its equilibrium position. 
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The slow flow of a viscous incompressible fluid in two dimensions is governed 
by the fourth order nonlinear equation 

where 1,4 is the stream function of the fluid defined by the relations 

where u and u are the velocity components in the x and y directions, respectively. 
The strongly implicit procedure has been used to solve this equation by writing it 
in the form 

V4#H-R zg $& (vzptl) - g- + (vyP+l)j = 0, 

where I+P is the nth approximation obtained for ~,4 and the set of difference equations 
derived from the differential equation are then solved for the values of I,P+~. For 
a given mesh provided the value of R was sufficiently small, the test problem which 
was the flow in a square cavity as considered in Ref. [l] and [3] was amenable 
to solution. However, if space centered differences are used for all the derivatives, 
for any given mesh interval there is a related Reynolds number R above which 
solutions could not be obtained because the method of solution becomes unstable. 
The results obtained at Reynolds numbers below the critical values are in very close 
agreement with those of Burggraf [I]. 
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